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On the Probability Density of Signal-to-Noise Ratio

in an Improved Adaptive Detector

Ivars Kirsteins

Donald W. Tufts

Department of Electrical Engineering
University of Rhode Island
Kingston, R.I. 02881
Abstract

We derive an approximate probability distribution for the SNR (signal-
to—noise ratio) of an improved adaptive detector in near rank-1 gaussian
noise where the filter weights are computed using the principal eigenvectors
of the estimated noise covariance matrix . The noise consists of tyo
components, a strong rank—-l-covariance interference component plus white
noise. Computer simulation is wused to verify the approximating SNR
distribution and show that it is accurate even for small sample size and low
interference-to-noise ratios (INR).

We uvse this distribution to show the improvement possible when using
filter weights based on just the principal eigenvectors rather than the full
inverse of the estimated sample covariance matrix when the noise covariance
is near rank 1 . For example we compare the expected valuwe of SNR for our
improved method and the conventional adaptive detector based on the inverse
of the estimated covariance matrix. We find that for twenty—five samples of
data and an INR value of 10 dB , the expected value of SNR for our new
method is better than the comparison method. Other statistics can also be
obtained from the probability density.

The main advantage of our principal-component method of adaptive



detection, in comparison with the method based on the inverse of an
estimated covariance matrix, is that much less data is required to produce a

given, needed level of SNR with high probability.



CHAPTER ONE

(A) Introduction

(A1) Detection with Known Covariance

Let us consider the problem of detecting a signal in gaussian noise
where both signal and noise are assumed to be real valued, the two
hypotheses are

Hp: x =n (noise only) (1.00)

Hi: x=n+s (signal present) (1.01)

where x is the vector of the observed data; n is a zero—mean gaussian

random vector with covariance matrix E(nnT) =N ; and s 1is the signal
to be detected. The dimensions of x, n, and s are pxl.
Under these conditions it can be shown that a likelihood ratio
test statistic [4] is
s (1.02)
Equivalently, the test statistic z can be considered as the inner
product of x and weight vector w.

z=x'w (1.03)
where w = N 1ls. (1.04)

Brooks and Reed [4] have shown that selecting a weight vector
according to formula (1.04) is the same as maximizing the signal-to-—
noise ratio (SNR). We can express this as maximizing the quadratic
ratio

wTssTw

SNR = AT (1.05)
w Nw

The weight vector that maximizes this ratio (see [1,2,4]) is
w=N1s (1.06)

The maximum SNR is



SNR,, = sIN 1s (1.07)

(A2) Standard Adaptive Detection with Unknown Covariance

In practice we do not know the noise covariance matrix and so it is
usually estimated from the data. The maximum—likelihood estimate of

the noise covariance matrix [7] is

K
~ 1
N = -—K— En.n. (1.08)

where the observed noise vectors, nj ;are pxl wvectors which are
mutually independent and gaussian distributed with zero mean and
covariance matrix N. Following standard methods one can obtain an
estimate of the weight vector by inverting the sample covariance matrix
[1,2,3] as follows:
w=N"%s (1.09)

To measure the effectivemess of this estimate of w [1], we can use a
normalized SNR which is formed by (a) replacing w by ¥ in formula

(1.05) and (b) dividing by the maximum SNR value of formula (1.07) .

The resulting normalized SNR is given by the formula

~ ~

W SS W

SNR = (1.10)

&I (sIN 1s)

This ratio is always between zero and one

0 ¢ SNR <1
It is a random variable because the estimated weight vector W is a
function of the observed data. Reed, Mallet,Brennan [1] have derived

the distribution of the SNR for the above weight vector estimate based

on the inversion of the sample covariance matrix, The distribution



is Beta with expected value

+ -
_E_K_%-—i—g_ (1.11)

where K is the number of vectors used to estimate the covariance matrix

E(SNR) =

and p is the matrix order .
From the expected value of SNR formula (1.11), it is roughly seen
that if the sample size K is small with respect to the matrix order,

then the estimate of w is likely to be poor [3], since E(SNR) is small.

(A3) Improved Adaptive Detection for Unknown, but Approximately-Low—

Rank Covariance

If N is approximately low rank, it can be shown theoretically
through eigenvalue and eigenvector perturbation analysis ( Wilkinson
{9] ) and experimentally [10] that the principal eigenvalues and
eigenvectors of N are relatively stable, but the small, near zero
eigenvalues and their corresponding eigenvectors fluctuate widely with
perturbation.

These results suggest that it should be possible to increase the
probability of obtaining a high value of SNR by using estimates of w
based on the principal eigenvectors of N . Let us look at w by
decomposing it in terms of the eigenvectors of the underlying true
covariance matrix, N . The eigen decomposition of N is N =V A VT where
V is the matrix of eigenvectors and A is the diagonal matrix of

eigenvalues. The k'th eigenvector of N is demoted by Vg -

Then the desired weight vector of (1.04) can be written as



e e 5 T N T 1
w=N"Ts = 11 (s vl)v1 + —x;-(s v2)v2 + ..+ lp

T
(s vp)vp(l.lZ)

This formula shows the origins of the difficulty in using the estimated
weight vector of (1.09). The right—hand-side eigenvectors and
eigenvalues of (1.12) would then be replaced by the corresponding
estimated values. The fluctuations in the small eigenvalues can then
cause large errors, because their reciprocals are used in the
computation of the weight vector. Next assume that Ay = A3 = . . ., =
Ap and consider the case in which Ay is much larger than the other
eigenvalues. Let us consider the limiting weight vector as A, =,
lim w =-—%— [(sTvz)v2 + (sTvs)v3 Pomg o & (sTvp)vp] (1.13)
Xl—9w 2
Neglecting the scale factor 1/12 which does not affect SNR, we can

exXpress w as

lim w =5 - (sTvl)v (1.14)

A e "

This form of the weight vector can be intrepreted as a null-steerer,
because it eliminates any component which is proportional to a specific
vector, in this case vy o Lin and Nolte [5] have shown that when the
noise covariance matrix N is near rank 1 and the component of the
signal lying in the direction of vy is not strong, then the performance
of the weight vector of (1.14) is about the same as the optimum weight
vector of (1.04). For the case of unknown, but approximately low—rank
covariance, motivated by the above considerations, we propose the use

of the following weight vector:



¥=s- (sT9p¥ (1.15)
where Vl is the principal eigenvector of N. Im previous work we
proposed this weight vector for adaptive detection and evaluated its
performance through simulation [15] . Here we study the performance
analytically in order to explain the results of the simulation.

Since this estimate is based on the principal eigenvector of ﬁ,
and the principal eigenvectors are relatively unaffected by
perturbation [10], it should be superior to the conventional
estimator based on the inversion of the sample covariance matrix.

Using the null steerer form of the weight vector formula (1.15)
and an approximation for the principal eigenvector (of the estimated
covariance matrix ﬁ) obtained through one iteration of the power
method, we will derive an approximate expression for the distribution
of SNR, formula (1.10) under the conditions of near rank-1 noise and

large sample size. Below is a brief outline of the steps we will take;

(1) Transform SNR formula (1.10) into new coordinates based on the

eigenvectors of N, that is

N1

p
} d; 4y o o
1 k=1

SNR = 3= (1.16)
p ci p .
) i > GFy
m=1 n=1
. " $
with ¢ = vy s (1.17)
d = v W = vy T (s - (sT9)%; ) (1.18)

and where xm and Vi are ‘the eigenvalues and eigenvectors of N,



respectively.

(2) Obtain an approximation for the principal eigenvector of N, 61 p

by taking one iteration of the power method [11] using vy as the
starting vector.

Vl = 61 = Nvl (1.19)

where Vl denotes our approximation to Vl.

(3) Expand vy using the eigenvectors of N as a basis.

x = Vg, (1.20)
and

v, = Vx (1.21)
Asymptotically, the expansion scale factors in vector x are gaussian as

the covariance sample size tends toward infinity.

(4) Using the expamsion (1.21) of ¥; in place of V; in formula (1.18),
substituting (1.18) in (1.16) and approximating the distribution of x
by a gaussian distribution, then as the noise tends toward rank 1, SNR
formula (1.16) reduces to a ratio of quadratics that are a function of
one random variable.
2
= @) * oy Bray B
SNR = 3 (1.23)
oy * o5 B ragh

where the ay, k=1,2..6 are constants and P is a ratio of two

asymptoticaly gaussian and uncorrelated random variables.

(5) Finally using formula (1.23), the distribution of f ( the

distribution of ratios of gaussians {6] is available in closed form ) ,



and standard univariate random variable transformation theorems, the
approximate distribution of SNR can be readily obtained. The paper will
be presented in three main parts; (1) Reduction of SNR assuming near
rank-1 noise and large sample size, (2) Finding the approximate

probability density of SNR using the reduced form, and finally, (3)

experimental results .



CHAPTER TWO

I) Reduction of SNR assuming near rank 1 noise and large sample size.

Coordinate Transformation of SNR

We start the derivation by re—expressing the signal and weight
vectors in terms of the eigenvectors of the N, recalling that the
eigenvectors of N form a basis. This coordinate transformation makes
the problem more tractable analytically. Performing the coordinate

transformation we obtain

p
2 c, Vv (2.00)
(2.01)

where the vk's are the eigenvectors of N. Now substitute formulas

(2.00) and (2.01) and the eigen—decomposition of N into SNR, formula

(1.10).
p P
} } dj dk cj ck
SNR = 41 k=1 (2.02)
e °:1 : 2
} ) A
m=1 n n=1

where Xj are the eigenvalues of N. The dj’s are random variables that
are a function of W. So far no approximations have been used. We simply
have a different expression for SNR.

The quadratic forms in formula (2.02) that involve the random



scale factors dj can be thought of as linear combinations of the
products djdk° With this in mind, we will proceed by first determining
the approximate form or distribution of the products djdk under the
asymptotic conditions as Ay, 0 and K2 = (near rank-1 covariance and
large sample size) . If we refer back to formula (1.18), it can be seen
that the sole contribution to the random component of random variable
dj is from Gi. the principal eigenvector of the estimated sample
covariance matrix, Therefore, the next step is to determine the
approximate distribution ( as A>0 and K 5 «) of ¥;. From this point
onward we assume that the noise is gaussian and strongly rank one,
that is, the noise covariance matrix is approximatly rank 1. To
simplify the analysis, the principal eigenvalue of N, A; is fixed at 1
without 1loss in generality. Also, assume that the remaining
eigenvalues are much smaller than 1 and equal.

M =10D>hy=RAg=...=1 (2.03)

p
The form of the weight vector that we will be wusing is the null

steerer (1.15) .

=35~ (s9,%, (2.04)

Approximating the Principal Eigenvector of N

To estimate Vl , the principal eigenvector of N , we use a three—
step procedure. First take one iteration of the power method [11] using
v1 (recalling that vy is the pripcipal eigenvector of N) as the
starting vector. We then represent the resulting vector, ﬁvl , in

terms of the principal eigenvectors of the trume covariance matrix N as

follows



(2.05)

in which the columns of V are the corresponding eigenvectors of N.
Finally, we form our estimate of ¥V; , which we denote by Vi, by
normglizing the above vector to uwmnit length

V1= [1/7 Y 1vx (2.06)
where x is a pxl vector with elements {xk} containing the expansion
scale factors.

We have shown in a previous paper [10] that if the true
covariance matrix of the noise, N , is approximatly ramk 1 , then even
for small sample sizes of 16 or 32 observations, ?1 lies in nearly the
same direction as vy ( see Fig. 1). The rate of convergence of the
power method [11] is proportiomal to the magnitude of the ratio of the
principal eigenvalue to the second eigenvalue and since the starting
vector is the principal eigemvector, vy , of the underlying population
covariance, it follows that in the near rank 1 case convergence should
be rapid , implying that V; should be an accurate estimate of Vl

In appendix A we show that the scale factors (elements of x) are
asymptotically munltivariate gaussian and independent as follows:

x; ~N(1, 2/K) (2.07)

xy ~NC O, 2/K) for k=2,3...p (2.08)

Determining the Weight Vector Expansion Coefficents d,

Let us now find the expansion coefficients dk of formula (2.01)

To obtain the d, coefficents, pre-multiply (1.15) by the k'th

10



eigenvector of N.

d = v 7 = v Ts - (sTo, ) v 19, (2.09)

Note that ck=vk‘s . Then substitute vy (2.06) in place of ¥y in the

weight vector expression (2.09) and expand

©
i N

<]
e
[}
[

Lmec——
o]
"

[«
I
©
|
.
[

K X (2.10)

2 ] 1/2
X,
J

N1 O
]
-
Lam—————n

[

S~

N
L

j=1 j=1 3
- p ey i 1Car TN A | (2.11)
k= %k 2, Ty ]
1 & 1 L
where
p
= c. x, (2.12)
y 2 i
j=2
p
27 = xj (2.13)
j=1

Before we form the products djdk » it is noted that the normalization

terms in dy (2.11) are simplified to a function of xy; as A, 0

11



since the variance of the xj's (for j=2,3...p) are proportiomal to Ay

This corresponds to the near rank 1 case .

0 1
= — (2.14)
*

The right-hand side of (2.14) is a2 good approximation of the
normalization term for sufficently small A, . Replace the normalization
terms in formula (2.11) by the approximation (2.14) ,

L 7Y
- o k " k
dk R ey (2.15)

x2
1 1

Reduction of the Products d.d, Under Near Rank-1 and Large Sample

Condition
Using the formula (2.15) and assuming that the error due to the
simplification of the normalization term (2.14) is neglible, we next

compute djdk'

12



_ clcjxk clckxj cjxky
d. d = ¢.c, — =
k k x x 2
1 1 x1
(2.16)
c2x X 2¢.x.x X.X
LGP . Vit | 15557 e 3
2 2 3 x4
5 =51 % 1

¥e now determine the behavior of the products djdk (2.16) in the near
rank-1 (Ap—>0) and large sample case (K> «). This can be donme through
calculation of the expected values and variances of the individual
random terms in (2.16). From these calculations (see Appendix B) it can
be seen that the variance and expected value of the i’'th random term (
for j,k#1,1 ) in (2.16) is roughly proportional to the ratio (XZ/K)Zi
where z; is some integer number. This implies that as Ay— 0 and K=,
the term(s) ( in formula (2.16) ) having a variance proportional to the
least power of XZIK will contribute the dominating variance to djdk
(2.16). It follows that under these conditions, the random component
of djdk should be accurately approximated by the dominating random term
in (2.16) in respect to variance.

The approximate expressions for the products djdk are obtained
using the above methodology (with the exception of d12, which can be
simplified algebraicly). We have

For j=1 , k=1

2

2 N y

g = b, = —5— (2.17)
=

for j=1, k#1

13



- i Y
dy dp ®Dyy = L A (2.18)
1
Finally , for j=2,3...p
k=2,3...p
d.d = D = - [ Saifp t o X ]
k- Y5k % % ¢ = d J (2.19)

where the approximating form of djdk is denoted as ﬁjk' It is assumed
that ck#O in the above formulas. For sufficently small A, and
reasonable values of K, the ﬁjk’s should be good approximations to the
djdk’s . We note that formulas (2.17) , (2.18) and (2.19) are
functions of random variables which are ratios of gaussian random

variables.

Simplification of SNR with D..

Substituting D.

jk ( formulas (2.17) (2.18) (2.19) ) in place of

djdk in formula (2.02) and through algebraic manipulation of the
numerator and denominator terms, we can transform SNR (2.02) to the

desired form, formula (1.23)

where B = = ——— (2.20)

Start by simplifying the numerator of SNR. From (2.02) the numerator

( denoting the numerator as n) is

14



p
} djdkcjck (2.21)
1 k=1

n=

N1 o

J
Separate the numerator double summation in terms of d12 » diyp (for

k=2,3...p) and djdk (for j,k=2,3...p) .

, p P p
2
n = ¢l d] + 2¢, } o dd + } } ddocc (2.22)

k=2 n=2 mn=2

Through (1) substitution of Ejk ( formulas (2.17) (2.18) (2.19) ) in
place of djdk in formula (2.22), (2) interchanging the order of
summation in the last term of n (2.22) and factoring, and finally (3)
the collection of equivalent terms , the numerator (2.22) can be

written as

(2.23)

PP
- } 2 2 2| | 2 2 -0
n = ok ¢, v c

=2 m=2

[y
N
[}
KN
«

W
[+

2
1 1
The numerator is now in the desired form. We simplify the denominator

X

in a similar manner. From (2.02) the denominator (denoting the

denominator as d) is

p

. j 2

g 2 A, } Ady (2.24)
=1 J k=1

As stated previously , we assume that
A =1

and

Ay

15



Now separate the denominator summation in terms of d12 and djz ( for

j=2,3...p) and the A, and 1/r, scale factors.

d (2.25)

= N

[+

N1

p P
2.2 2.2 1
d_cld1+§ z c. d, "'fi;

LY
Ul
N
w
U
(]
»w
L]
(]
"N

Then as before, through (1) substitution of 55k ( formulas (2.17)
(2.18) (2.19) ) in place of djdk in (2.25), (2) interchanging the order
of summation in the second and fourth terms of (2.25) and factoring,

and finally (3) the collection of equivalent terms, the denominator can

be written as

P p P p
A 2 2 2 2 2 2 2
G } eplry * eyl ¥ } } x| * *2%1 } °x
=2 j=2 k=2 k=2
3
|
P
2
- 2 c c + A, c y
L] [2 = aa (2.26)
=2
2l

Using the simplified forms of the numerator (2.23) and denominator

(2.26) and forming their ratio , the approximate SNR is

16



SNR = ) (2.27)
a + A+ ag g + a4ﬂ
P
2
where a, = - 4 ¢y } € (2.28)
2
a, = ¢ (2.29)
p p
2 2
a = 2 2 cj e (2.30)
j=1 k=1
p
2 2
A= Al } os (2.31)
=2
p
2 2
85 = -2 cy } cx + kzcl (2.32)
=2
P
2 2
a, = Y ep /| o+ o (2.33)
k=2

The SNR is now a function of one random variable, B . We have obtained
the form of SNR that we wanted. The density of SNR can now be readily
be obtained using standard univariate transformation theorems for

functions of random variables.

Validity of Approximations

Although earlier we stated that the reduced formulas for Sjk

(2.17), (2.18), and (2.19) only hold for cj#O for j=1,2...p and c,#0

17



for k=1,2...p , our above result (2.27) is valid even when some of the

cj's and ck's are zero or very small. This is because the ﬁjkls

associatted with the relatively large non—-zero cj's and ck's contribute

the dominating variance in formulas (2.23) and (2.26) . By comparison,

’ L

the ﬁsk's associated with the zero or very small c¢j's and cy's
contribute generally little variance to (2.23) and (2.26) under the
near rank-1 and large sample size condition.

The accuracy of the approximation for SNR (2.27) can be determined

through the error calculations in Appendix B.

18



CHAPTER THREE

II) Determining the approximate probability density of SNR using the

reduced form.

In section I it was shown that when the noise covariance matrix
is almost rank 1 and the sample size is sufficently large , the SNR
reduces to a function of a single random variable $ that is
approximatly a ratio of gaussians. Obtaining the density of SNR is now
a simple two step procedure:

1) Determine the density of B .
2) Using standard univariate transformation theorems, obtain the

density of SNR with from density of B .

Determining the Density of $8

Recall from section I that B (2.20) is

p
B = E c.x (3.00)

In appendix A it was shown that the x,'s for reasonable sample size K
tend toward gaussian, therefore the random variable § can be
approximated as a ratio of independent gaussian random variables. From
appendix A the normal approximations were shown to be:
xq . N(1, 2/K) (3.01)
x, -~ N(O, XZ/K) for k=2,3,...p (3.02)

We can therefore consider P as a ratio of two gaussian random variables

19



, X and u as follows:

B =x/u (3.03)
where
(3.04) (3.05)
P
x = 2 c. X, , a = x
- B 1
j=2
The means and variances of x and u are
Elz] =x =0, Eful =u=1 (3.06)
P
62 =2y } c? / K 62 = 2/K (3.07)
x ] u

Kanter [6] has derived a general form of the
the ratio of two gaussian random variables ,

as before we have

2

probability density for

using the same notation

p(B) = [73;-] exp [4G6% 1]/ Gt + 0 (3.08)

[r®r exeC 2 ) e atp) )+ 1]

where a8 = o6 , b = o
X u

r = correlation coefficient 0 ( r (1
v = ab v“l—rz)
¢ = 62/ 2b2

s(B) = (bzﬁ - rab)/y
& = MG — T

2(B) = v (S s(B) +1) / J(siB) +1)

20

(3.09)
(3.10)

(3.11)

(3.12)
(3.13)
(3.14)

(3.15)



Noting that the correlation coefficent is zero ( r=0 ) since x4
and x, for k=2,3...p are approximatly independent, we can now obtain

the density of f directly through substitution.

p(B) = [V2 /¥, M1 [exp —K/4] / [(2/2,T) p2 + 1] (3.16)

K /2 ¥k /2 K / 4
c i erf |————m exp
vI(2/2 B +1 1] xl[(z/xzr%ﬂ] (2/1') p +1

P
where T = 2 c? (3.17)
J

§=2
We have obtained the demnsity for B. At this point we can derive the

approximate density of SNR.

Finding the Approximate Density of SNR

To calculate the approximate density of SﬁR, we need the nuse of
the following random variable transformation theorem [8]
Theorem A: Given a function g(B), where B is a random variable with
density p(B) , the density of g(B) can be found using p(B) as
follows: we solve the equation y=g(B) and denote its real roots by
B1,Bp....B,. Clearly, the values of the roots depend on y. Then the

density of y is given by the formula

p( Bl ) pf Bn )

f(y) = - + .. .+ - (3.18)
I g( Bl ) I g( Bn )
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d g(B)

where g( p) = (3.19)
dap

and

a + nlﬁ + nzﬂz
glpl= 3 (3.20)
a+ A+ ljp + ;¢ﬂ

Since g(B) is a ratio of quadratics, it follows that there are two real
roots. Multiplying both sides of formula (3.20) by the denominator of

g(B) and collecting terms we have

2 2
ya + yA + Ya3B + ya4ﬂ =a+ap+ a,p (3.21)

2
(ya4 - az)ﬁ + (ya3 - al)ﬂ + (aly-1] + yA) = 0 (3.22)

Note that formula (3.22) is in the form of a standard guadratic,
therefore the standard root formula for quadratic equations can now be

applied to obtain the roots of g(B) . The two roots are

(a1 - ya3) + [ (yas—al)2 ~ 4(ya4 - az) (aly-1] + yA ) ] 42
B1,2 ‘ 2(ya4 = az)

(3.23)
Next we determine the derivative of g(B) with respect to 8.

Differentiating we get

dg(B) 2 -1
—_ (a1 + 2a2ﬁ) {(a + A + aBB + a4B ) (3.24)

apg

—(a + alﬁ + a2B2) (a3 + 2a4B) (@ + A + 835 + 8452)—2

22



We can now obtain the approximate density of SNR through direct
substitution using theorem A formula (3.18), the density of $ (3.16),
the roots By o, (3.23) and the derivative g'(B) (3.24). Denoting the

density of SNR as f(y) , we get

p(Bl) p(Bz)

f( vy ) = +— + 5 (3.25)
BN BOY

We recall that i and P, are functions of y. The dependence om y is
given in formula (3.23), The density f(y) exists over the region where

By and By are real .

Asymptotic Moments of SNR when A0

The formulas we have derived for the probability demnsity of SNR
(3.25) are complicated and one would probably have to resort to
numerical evaluation of the integrals to obtain the first and second
moments of SNR. However, in the extreme case when AP, it can be

shown that asymptotically as K Do
(1-c¢7)
s\t b1 - [——-1—] 22 (3.26)

where 2~N(0,1) and "d" implies convergence in distribution. Using

(3.26) we can readily obtain the expected value and variance of SNR.
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- K- (1- <] )
E[l SNR]1 = (3.27)
K
N 2 1= ci ]4

Var[ SNR] = (3.28)

2

K
Proof: First, it was shown in Appendix A that the numerator and

denominator of B (3.00) are asymptotically gaussian (see Appendix A for
detail). Through application of a theorem for the asymptotic
distribution of a function of asymptotically gaussian random vectors
[Theorem B, pg. 124,14] , it is seen that B (3.00) itself is

asymptotically gaussian as K 9« as follows:

p 1/2
d 2
g & [).2 }cj ] . (3.29)
i=2

where z~N(0,1/K) . Next, without loss in generality set the signal

power to unity, that is

p
} ¢t = 1 (3.30)

The summatiom in (3.29) can now be rewritten as a function of cq
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B S [r, 12 | (3.31)

substitute (3.31) in place of B in formula (2,27) and let Ay—> 0 (note

that c; is constrained to be clzﬁl in formula (3.31) ).

~ d 1
SNR S (3.32)

1+ (1- ci e

Finally using (3.32) and [ Theorem B, pg. 124,14] (asymptotic
distribution of functions with vanishing first order derivatives) we
get the asymptotic distribution of SNR as K D= .,

These formulas should generally give a good estimate .of the
moments of SNR even for the general case when Ay is close to zero and
K is large. Using the formulas for the expected value of SNR for the
low rank filter weight estimate formula (3.27) and formula (1.11)
when the filter weights are based on the inversion of the sample
covariance matrix, we can roughly determine the number of samples
needed to attain equivalent performance ( in respect to the expected
values of SNR for both methods ) using the conventional filter weight
estimate (1.09) compared against the improved rank-1 filter weight
estimate (1.15) . Denoting the number of samples used to estimate the
noise covariance in the low rank method as KI and the sample size for

the conventional detector as KC’ to attain equivalent performance , KC

must be

Re K [ (p-1)/C1-¢2)1-1 (3.33)

25



CHAPTER FOUR

III) Experimental Results

Computer simulation results for the distributionm of SNR are
presented for three cases; (1) rank-1 interferemce plus white noise,
(2) a highly correlated 1'st order autoregressive noise component plus
white noise, and (3) when the interference data being used to estimate
the interference covariance matrix is contaminated by sigmnal. Further,
for the rank-1 interference plus white noise case, we show the
improvement of the 1low rank filter weight estimates over the
conventional estimate (based on the inversion of the estimated sample
covariance matrix).

The notation is the same as in sections I and II. The ramnk-1
interference plus white noise gaussian noise vector is gemerated as

follows

p
n = } wkj T. (4.00)

where the scale factors Wyj are zero—mean and independent gaussian

random variables with variance

Var[ wp; 1 =1+ a? (4.01)
and for j=2,3...p
Varl wy. 1= o2 (4.02)

The vectors Ej (j=1,2...p) are the normalized eigenvectors of the

matrix R. The elements of R are
Tij = ali_jl for i=1,2...p (4.03)
ji=1,2...p
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The matrix R corresponds to the covariance of a first order AR process
with correlation a, therefore the noise vector n, corresponds roughly
to a snapshot of a 1'st order autoregressive noise component plus white
noise if 62>>1j (for j=2,3...p) where the Y; are the eigenvalues of R,
The interference—to—noise ratio is defined as

INR = 10logyo( 1 / po? ) (4.02)
where p is the covariance matrix order.
The signal vector we shall use is

sy = cos( 2n f (k-1) ) for k=1,2...p (4.03)
where f is the frequency.

For our computer simulation, we set a=.9999, p=20, K=25
(covariance sample size). Three hundred independent trails were
performed with INR being varied from 10dB to 15dB and the signal
frequency varied from .03 to .06 . The noise covariance matrix was
estimated wusing the maximum-liklihood estimate formula (1,08).
Scattergrams (see Fig. 2) show that the SNR approximation is accurate .
Next, histograms with confidence bounds were generated using the
simulated data. The confidence bounds were calculated by noting that
the frequency count in a particular histogram bin follows the binomial
distribution and then wusing the DeMoirve—-Laplace theorem [8] to
estimate the standard deviation of the frequency count,

op =V(n £, (1-£,)) (4.04)
where n is the number of trials and frk is the expected frequency for
the k’th histogram bin obtained using the derived SNR density (3.25) .
Figure 3 shows that the experimental data fits the SNR density (3.25)
well.

Next we show that the probability demsity formula (3.25) for SNR
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can be also used to predict the performance of the detector when the
interference is a mixture of highly correlated 1’st order AR process
noise and white noisé. The noise vector ny is generated using (4.00)
and the same parameters as before except

Varl Yk j 1= tf + o2  for j=1,2...p (4.05)
where 75 (j=1,2...p), are the eigenvalues of matrix R, and the value of
the signal frequency f is .16 . In evaluvating the SNR density formula

(3.25) , we assume that Ay is proportional to 62 » that is,

or equivalently that y;=0 for k=2,3...p . Histograms ( see Fig. 4 )
show that we get relatively good agreement with the predicted
distribution .

When the noise data is contaminated by the signal that is being
received, that is,

Ek = mny + sgs
where s is a scalar, we can still attain reasonable performance using
the rank-1 filter weight estimate . This is shown through experimental
results. The signal-to—white-noise ratio (SWNR) of the contaminating
signal is defined as

SWNR = 10logyo( sg / 202 ) (4.07)
Using the same methodology and parameters as in the first set of
experiments (a=.9999, INR=10dB, K=25) and with signal frequency

f=.047, we generate the signal contaminated noise data using (4.06) and

S =—15dB . The histogram of the experimental data (see Fig. 5) and
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statistics indicate even with signal contamination, we can still attain
relatively high values of SNR.

By evaluating the formula for the expected value of SNR (1.11) and
the density formulas derived by Reed, Mallet, Brennan [1,formula 17]
for the conventional adaptive detector based on the inverse of the
sample covariance matrix and evaluating the density of our improved
detector using the SNR density formunla (3.25) , it can be seen that for
even small sample sizes (see Fig. 6,7), the filter weights based on the
principal eigenvector yield superior results in this example.

Below, the approximate formulas that were derived in Chapter 3 for
the expected value of SNR (3.27) and variance (3.28) are evaluated and
compared against the computer simulation results obtained earlier. It
can be seen from the below results, that formulas (3.27) and (3.28) are

accurate.

a) mean and standard deviation of SNR calculated using the approximate

formulas (3.27) and (3.28) when INR=10 dB, c=.9999, K=25

£=.03 : E[SNR]=.962 , Dev[SNR]=.0542 (4.08)
£=.04 : E[SNR1=.965 , Dev[SNR]=.0500 (4.09)
£=.05 : E[SNR]=.960 , Dev[SNR]=.0566 (4.10)
£=.06 : E[SNRI=.963 , Dev[SNR]=.0524 (4.11)

b) mean and standard deviation of SNR obtained through computer
simulation based on 300 independent trials and wusing the same
parameters as before .

£=.03 : E[SNRI=.965 , Dev[SNRI=.0442 (4.12)

f=.04 : E[SNRI=.965 , Dev[SNRI=.0419 (4.13)
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£f=.05 : E[SNR]=.967 , Dev[SNR]=.0438 (4.14)

f=,06 : E[SNR]=.967 , Dev[SNR]=.0398 (4.15)
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CHAPTER FIVE
Conclusion

The formulas we have derived are useful over a reasonable range
of interference—to—noise ratios and signal types. For near rank-1
noise, the null steerer gemerally provides good performance over
conventional detectors based on sample covariance matrix inversion.
Further, these results should give insight into determining optimal
adaptive detectors and their performance for higher rank near singular
noise.

The reader may question why we did not use the known asymptotic
distribution of the principal eigenvector of a Wishart matrix [13] in
deriving the SNR probability density. Through experimentation , we have
determined that the power meth;d approximation for the principal
eigenvector of the estimated sample covariance matrix is much more
accurate for small sample sizes than the extreme asymptotic

distribution.
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APPENDIX A

Determining the Form and Distribution of x,

We will compute the expansion scale factors which are defined in
formula (2.05) and show that the Xy are asymptoticaly gaussian. Recall
that the eigen—decomposition of N is

N=v AV (21.0)
Neglecting its length , the principal eigenvector of N is approximated
by ﬁvl and it can be represented using the matrix V of column vectors
which are the eigenvectors of the true covariance matrix N as follows:

Nvy=Vx (a1.1)

in which x is the pxl column vector of the scale factors.

1

x [x3 29 . ... x, 1T (al.2)

Then

i
<P-l

x N vq (al.3)
Next, vy can be rewritten as

vp=Vb (al.4)
where b= [100. . .0 ]T . Note that the dimensions of b are pxl
. Now substitute formula (al.4) into (al.3) .

x=VINVD (al.5)
To obtain the distribution of x we need to first find the distribution
of VINV . Use a theorem of Wishart matrices (from [7]), recalling that
N is Wishart [13] . For additional discussion and use of the Wishart .
distribution of estimated covariance matrices see (Anderson [7]),
(Goodman [16]1), (Reed, Mallet, Brennan {1]) and (Capon and Goodman
[17]). ‘
Theorem B:  If N~W,(NK) , then VINV~w (VINV, D) .

In this notationm, Y~Wp(X.K) means that the pxp matrix Y is Wishart
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distributed with expected value X and K degrees of freedom.
Therefore

VIRV ~W (VINYV, D) (al.6)
The distribution parameters of (al.6) can be simplified by substitnting
the eigen—decomposition of N in place of N.
Then

VINV~Wp( A, K) (al.7)
where A is the diagonal matrix of eigenvalues of N. We now have the
distribution of V'NV . Anderson [7] has shown that the sample
covariance matrix is asymptotically gaussian distributed as the sample
size increases. The equivalent can be stated for Wishart matrices as K
—>@ . The theorem from Anderson [7] is re—stated below for the case of
Wishart matrices.
Theorem C: If > is Wishart Wp( 2 » K ) , then the asymptotic

distribution of

3= - [ ¥ - ] (al.8)
WK :

is normal with mean 0 and covariances

E[ X35 Tkl 1 = o5 oj1 * %91 Sjk (al.9)
where X5 is the i,j'th element of matrix X (al.8) and 533 is the
i,j'th covariance from Y .
Let

S = vINv (a2.0)
then

x = 3b (a2.1)
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It can now be seen that x is simply the first column of S. By
application of theorem C directly to formula (al.5) and using formula
(al.9), it can be easily shown that x is asymtotically multivariate
gaussian with mean

ELxF] = ¥ = (1 00...017 (a2.2)

and covariance matrix

[ 2/K 0 0 . . . 0
(a2.3) 0 A /K 0 ] . . 0
) ) 9 S ) ) .
El (x-%)(x-%)11 = : vy ot | :
. = 5 0 .
H . . 0 XZ/K 0
] i ] ' . 0 /K|

of dimension pxp and where K is the nnmﬁer of vectors used in
estimating the covariance matrix N. Note that the elements of x are
asymptoticaly uncorrelated, therefore independent. Further , for
reasonable sample size we can consider the distribution of x to be

approximatly multivariate gaussian with the above parameters.

APPENDIX B

Meaqs and Variances of ﬁjb and the Approximation Errors
In appendix B we will first compute the error of approximating the
products djdk ( formula (2.16) ) by the corresponding asymptotic
results ﬁjk ( formulas (2.17) (2.18) (2.19) ) and then the respective

~

means and variances of Djk and the approximation errors for the near
rank 1 covariance matrix and large sample case. The approximation error

Ajk is given by
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A, = D, - a; d (b1.0)

Through substitution of formulas (2.16), (502 N9) (2.18), and (2.19)

into formula (b1.0) we get (it is noted that A11=0 ):

For j=1 ,k=2,3...p the error is

2
A = _cl xk Y = xk Y (b1.1)
1k x2 x3
1 1
and finally for j=2,3,...p
k=2,3,...p
c y c, X,V c2 X, X
_ ik . k¥ _ 1% %
Ajk 12 12 12 (b1.3)
1 1 1
2 X X, X 2
» 1% kY e
3 4
il %

We will now calculate the mean and variance of the approximations ﬁjk
(formulas (2.17) (2.18) (2.19) ) and the approximation error terms Ajk
(formulas (b1.1) (b1.2) (b1.3) ) . Since ﬁjk's and Ajk's are sums of
ratios of uncorrelated random variables, we need the use of the

following formulas for eatimating the mean and variance of ratios of

two random variables. Given uncorrelated random variables u and x, then
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(b1.4) 2

x . Elx] x - %%
E = % Eial and Var = = E% ; (bl.5)
o

These approximations (bl.4) and (b1l.5) are generaly accurate when

(b1.6)
Elul#0 , E[ul » L8 (b1.7)
c o
and —_ o 2 (b1.8)
2E[ u ] o El x ]
where oy and ¢,  are the variances of x and u respectively. Note that

although the moments of these ratios might not exist in the strict
theoritical sense, these estimates (formulas (bl.4) and ( bl.5) )
should give an good indication where the bulk of the probability
density mass of the ratio x/u lies (using the Tchebycheff inequality
[8])). Further, note that the above conditions (bl.6), (b1.7), and
(b1.8) are essentially satisfied in the case that we are considering,
near rank 1 covariance and large sample size . Using formulas (bl.4)
and (b1.5) and the gaussian approximations for the xk's as derived in
appendix A we get

Note that throughout the mean and variance results we shall use

p
r- E ¥ (b1.9)

We now calculate the expected value and variance of the approximations

36



ﬁjk ( formulas (2.17), (2.18) and (2.19) ) and the error terms Ajk

(formulas (b1.1) and (b1.3) ) using formulas (b1l.4) and (bl.5) .

1) Dy,
(b2.0) (b2.1)
- 12 T - 2 Ai Iz
E[l D_.,] = . Varl ]l 5
L K[1+2/K] el % 11+2/x}
2) Dy ¢ k=2,3...p
E(D,] = 0 (b2.2)
p
2 2
A'2 ck } cn
Varl 51 ] = 2 (b2.3)
K
K
~ 2
E[LD..] = ¢ (b2.4)
ii j
- 4 12 ci c%
Var[ D, 1 = J (b2.5)
jj K
4) Djk 3 ji#*k for j=2,3...p
k=2,3...p
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El Djk] ~ cj 2 (b2.6)
2
A, e, [ e, + ¢ 1
Var[ D, ] =~ 2L 4 &k (b2.7)
jk
K
The mean and variance of the error Ajk is
1) Alk 3 k=2'3.top
-A, C. C
E[ Al = —2—2-E (b2. 8)
E[1+2/K]
The variance of the terms of Alk are
c, X, ¥y Xz 02 ( c2 +T)
1 *x e T
. Var ———— ~ 3 3 (b2.9)
xl K [ 1+2/K]
x y2 k3 (12 2r+s P2 )
k A k
Var 3 =z - 3 3 (b3.0)
l xl ] K [ 1+ 6/K }
2) Ajj i=2,3...p
2 2 2
A.c, -2 A, ¢ A, (2 ¢, +T)
El Ajj 1= 2] 2k + 22 k (b3.1)
K[1+2/K] K" +12K[1+1/K ]

The variance of the terms Ajj are

38



ci x? T 2 Xi c:
Var 5 J = 7 (b3.2)
i o K [ 1+ 2/K]
(2 ¢, x, v ] 4 kg c% ( c? +T)
Var ; J = 3 J J (b3.3)
L 1] K2 [1+2/K1]
[19] x? y 4 l; (12 c? +37)
Var '—3-'1— = 3 J 3 (b3.4)
L x) K" [ 1+ 6/K]
Sl [ 24c? + 1) (122 + 91 - 262 + 2 ]
Var x ~ J J J {b3.5)
2 4 2 W
<2 K [1 + (12/K) (1 + 1K )1
3) Ajk : j#k for j=2,3...p
k=2,3...p
-2 A, Cc. ¢ 2 lz c. ¢
E[ A1 = 2 3 k 5 2 j k (b3.6)
J KE[1+2/K] K“+12 K[ 1+ 1/K]
The variance of the terms of Ajk are
02 X, X Xz c4
Var[ __qu_k] x = 20 > (63.7)
g K" [1+2/K]

39



cjxky licf(c:+l')

Var:L 3 4 3 ) (b3.8)
x5 K°[1+2/K1]

S c;x.y < chk%cjzl') .
Sy ! 211+ 2/ 1% ' i
'2x.xky 4).3 [2(0?+c2)+1’]

varf—id—— | = 2 1 ] k

x, K" [1+6/K]
2 4[2 2 2 2
X, A
v"[_JTle] . 2_°k°j+(°j+°k)r+ 1'2] ol
. x4[1+(12/x)[1+1/x] ] .
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Histograms based on 500 independent trials of the
magnitude of the angular perturbation of the principle
eigenvector of N . N (1.08) was generated with K
‘independent realizations from a first-order autoregressive
‘process. . ) )

n(j) = .9n(j-1) + w(j) for j=1,2...10

k k k

where w(j)k are independent, zero-mean , unit variance gaussian
random wvariables.

The magnitude of the angle ~between the principle
eigenvector of E( N ) and N is

A = (180/1) cos | 7, v,



Fig.

2)

SCATTERGRAMS OF TRUE SNR FORMULA (1.10) VS.
APPROXIMATE SNR FORMULA (1.23) BASED ON 300
INDEPENDENT TRIALS. THE EXPERIMENTAL PARAMETERS
ARE:
0=,9999 , =20 ( COVARIANCE MATRIX ORDER)
K=25 ( COVARIANCE SAMPLE SIZE )
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Fig. 3) HISTOGRAMS OF SNR FORMULA (1.10) BASED ON 300
INDEPENDENT TRIALS . BOUNDS ARE PLACED ON THE EXPERIMENTALY
OBTAINED BIN FREQUENCIES , ASSUMING THAT SNR HAS THE
DERIVED PROBABILITY DENSITY (3.25) AND THEN CALCULATING

THE EXPECTED VALUE AND ESTIMATED STANDARD DEVIATION OF THE
BIN FREQUENCY. HISTOGRAMS ARE GENERATED USING 30 EQUALLY
SPACED BINS. THE EXPERIMENTAL PARAMETERS ARE:

a=.9999 , =20 ( COVARIANCE MATRIX ORDER )

K=25 ( COVARTANCE SAMPLE SIZE )
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